光纤激光器产业:始于苏联,兴于中国

电工电气网】讯

图片 1

这是一个产业的故事,但先说点简单的科学常识。

激光,是一种受激辐射产生的光。从技术原理角度分析,激光产生的三个必要条件包括:粒子的受激辐射、反转分布以及稳定增益。

激光是20世纪的重大科技发明之一,英文名“Laser”,1964年钱学森建议中文名为“激光”。激光的科学原理“受激辐射”是爱因斯坦1917年提出的,其实挺简单的,高中物理知识就能理解。

激光的理论基础最初在1916年由爱因斯坦提出,简单地说包括受激吸收和受激辐射两个过程:在受激吸收过程中,物质中处于低能级E1的粒子受到能量为hv=E2-E1的光子照射而吸收能量跃迁至高能级E2;在受激辐射过程中,处于高能级E2的粒子,受到能量同样为hv=E2-E1的光子激励,在跃迁至低能级E1的过程中辐射出一个与入射光子具备完全相同状态的光子。经过这两个过程,入射光子数量获得成倍增加,光强增大,形成了光放大效应。

爱因斯坦指出,处于高能级E2的粒子,当频率为V=/h的光子入射时,粒子会以一定概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这叫受激辐射。

基于受激辐射的特性,在持续有光子射入激励的情况下,某些物质中的粒子能够在跃迁至高能级E2之后稳定在次高能级E3,被称之为亚稳态。当这些粒子大量堆积于亚稳态E3并且数量远超过处于低能级E1的时候,就形成了物质中粒子数的反转分布,使得受激辐射数量远大于吸收数量。

看出厉害了不?一个光子变出另一个完全一样的了,这两光子接下去会干啥?没错,这两个又去找别的粒子开火,变成四个了。这个过程就象核爆炸链式反应,光子数量迅速增加,相当于原来的光信号被放大了。“Laser”其实是Light
Amplification by Stimulated Emission of Radiation的缩写。

粒子形成反转分布后,在激励下不断辐射出的光子通过谐振腔持续获得增益,并在满足条件后从谐振腔中射出。

这是爱因斯坦提出的又一个诺贝尔奖级别的理论成果,但是直到他去世5年以后的1960年,激光器才做出来。为啥要这么长时间?因为爱因斯坦论文中同时提出的“受激吸收”。光子可能碰上E1能级的粒子,把它变成E2能级,自己消失了,所谓的链式反应也就没了。

基于这一系列反应过程,入射光子最终形成同方向、同频率的相干光束,使激光具备高亮度、高方向性、高单色性、高相干性的特点。

一般材料都是受激吸收的粒子多于受激辐射的粒子(低能级E1的多于高能级E2的),所以光通过强度不会放大反而会降低。要产生激光,关键条件是“粒子数反转”,高能级粒子多于低能级粒子。但这个其实也没那么难,回头看1930年代物理学家们就有能力做出来。

激光器是激光的发射装置,基于激光的产生原理,其核心器件主要包括泵浦源、工作物质和谐振腔三部分。

1960年美国做出激光器后一年,中国马上就由王大珩院士领头在1961年做出了中国第一台激光器(王老2011年去世,刚被选为改革先锋100人之一)。只是1930年代科学家对光学理论与技术不够融汇贯通,没想到去做,别的重大发现很多。这让激光的发明过程多少有一些曲折离奇,是“Maser”先搞出来,才做出了“Laser”。

泵浦源:

红宝石激光器

泵浦源在激光器中承担激励源的功能,其目的是使工作物质中的粒子处于反转分布的状态,由于受激辐射的光子数目与入射光子数目和物质中粒子反转分布数目成正比,通过泵浦源的持续激励,工作物质中就能够辐射出大量特征状态一致的光子,形成初始的激光。

美国哥伦比亚大学的物理学家查尔斯·汤斯二战时搞过雷达,战后美国海军想搞出强大光束,汤斯接了任务。1954年,汤斯终于把Maser做出来了,虽然放大的是微波,但是这为Laser的发明作好了准备。1958年,汤斯又和同事兼姐夫的阿瑟·肖洛发现,将氖光灯泡发射的光照在一种稀土晶体上,晶体会发出鲜艳的、始终会聚在一起的强光。

根据激励方式不同,泵浦源主要可以分为电激励、光激励、热激励和化学激励,电激励采用气体放电或电流、电子束注入等方式进行激励,常见于气体激光器、半导体激光器中;光激励采用光源照射激励,多用于固体激光器和液体激光器;热激励和化学激励则通过热能和化学反应进行激励,这两种激励方式比较少见,应用于特定几种激光器中。

1960年,美国休斯实验室的梅曼制成了世界上第一台激光器,用高强闪光灯管来激发红宝石。这里的关键是要有一个“光学谐振腔”,光通过晶体一次放大的倍数并不太高,但是如果两头贴上反射镜,不断来回放大,那就厉害了。一片反射镜再少镀点银漏出一部分光,出来就是人们熟悉的单向性极好的激光了。肖洛的贡献是,把这个光学研究者已经熟悉的手法,引入到激光领域了。汤斯获得了1964年诺贝尔物理学奖,肖洛是1981年获得诺贝尔物理学奖的,可能是1964年名额不够了。

工作物质:

1964年因为激光和汤斯同时获得诺奖的是两位苏联物理学家,尼古拉·巴索夫和亚历山大·普罗霍罗夫。那年头苏联物理学家也非常厉害,巴索夫提出的半导体激光器发展出了后来的神器:光纤激光器。

如果说泵浦源是激光产生的驱动力,那么工作物质就是泵浦源的主要鞭策对象,驱使他源源不断的辐射出光子。由于激光的产生需要物质中粒子具备反转分布状态,所以就要求工作物质存在亚稳态能级,自1960年美国科学家梅曼发明世界上第一台激光器至今,已经有多种多样符合条件的工作物质被探索出来,按形态不同主要可以分为固体、气体、液体和半导体。按照使用的工作物质种类,激光器相应的也被分为固体、气体、液体、半导体激光器等。

巴索夫、普罗霍罗夫和汤斯的团队一样,1955年也搞出了一个“Maser”,氨分子束微波激发器,然后自然会想到激光。巴索夫的贡献是,他1958年公开发表论文提出了用半导体制造激光器的想法(在半导体里实现“粒子数反转”的理论描述),1961年又发表了“载流子注入”PN结的文章,并在1963年造出了PN结半导体激光器(美国人按他提出的原理先造出来)。

谐振腔:

半导体激光器不如出现在教科书上的红宝石激光器名气大,但是专家们显然清楚半导体激光器的理论意义,潜力要更大,所以三人并列的诺奖给了两个苏联的一个美国的。

工作物质通过泵浦源受激辐射出光子后,还需要经过一道“增益”环节来使发射出的激光达到一定阈值,谐振腔就在激光器中承担增益放大的功能。最基础的谐振腔结构可以理解为平行放在工作物质两边的两面不同的反射镜,一面反射率为100%,一面则根据所需要的激光阈值部分透射。由于光强与光子数密度成正比,初始受激辐射产生的光子通过在谐振腔中来回振荡不断穿过工作物质获得持续放大,并最终达到符合要求的阈值。

半导体激光器的优点非常多:电子直接变成光子,电光转换效率高达50%以上,比其它类型的激光器高多了;使用寿命长达10万小时以上,比其它类型长很多;半导体还能调制输出,别的类型办不到;体积小、重量轻、性价比高,半导体比红宝石之类的材料要便宜。

在选用工作物质相同的情况下,谐振腔和泵浦源就成为决定激光器发射光束的质量、性能的关键所在,同时也是激光器的技术核心点。除此之外,激光器中还有耦合器、隔离器、调制器等起到调节光束方向、频率等辅助作用的无源器件,共同组成一个完整的激光器装置。2、以光纤激光器为首的固体激光器器件占据市场主流

其实要理解半导体激光器的优点并不难,虽然一般人可能没留意,但是LED灯是人人都见过的。LED发光的原理就是载流子在PN结里复合时,将多余能量用光的形势放出来,电流直接变成光,而不是象白炽灯泡那样要把灯丝烧热。所以LED灯相对传统灯泡有一堆优点,色彩多、光强可调制、寿命长、成本低之类的,就和上面说的半导体激光器的优点差不多。半导体激光,可以理解成在LED发光的原理上,再加上光学谐振腔的放大效应,而且这个谐振腔也不必新建,在半导体内部就有了。

在激光产业链中,激光器件属于激光器的上游零部件,从激光器全球市场看,光纤激光器、半导体激光器和全固态激光器占据主导地位,其中光纤激光器占全球激光器规模的近40-50%,传统的CO2激光器由于功率和转化率限制市场份额呈逐年下降趋势,而液体激光器由于性能原因在实际应用中更加少见,所以相应的在器件市场中,以光纤激光器为首的固体激光器用器件占据主流。

激光是罕见的一发明出来立刻就能实用的技术,1961年就用来动手术了。因为激光的特性实在太突出了,所有光子的一致性特别好,对着一个方向,能量作用于一点,可以比太阳耀眼上百万倍。拿功率大点的激光对准什么东西,切割搞加工都可以。切割、焊接、测量、打标各种用途很多,在通信、工业加工、医疗、美容等无数个行业应用,不断替换传统工艺。

特种光纤:特种光纤是光纤激光器的关键原材料,相比于普通光纤在掺杂元素、工作波长、结构和光学性能上都有其特殊性。激光器中常用的特种光纤包括YDF、GDF和大芯径传能光纤,YDF主要用作光纤激光器的工作物质,通过在光纤纤芯中掺杂稀土元素使其实现光放大效应;GDF主要用作光纤合束器、隔离器以及光纤激光器谐振腔—光纤光栅的原材料;大芯径传能光纤则用于泵浦源、合束器和光纤激光器的输出端,起到激光传能的作用。

现在我们来聊光纤激光器。2017年全球工业激光器销售额20亿美元,其中48%是光纤激光器。光纤激光器的关键人物是俄罗斯人瓦伦京·加彭切夫(Valentin
Gapontsev)。

特种光纤的整体市场规模较小,2017年全球市场规模约为4亿美元,国内约不到8亿元,美国的Nufern、nLight,德国的莱尼等公司以领先的技术优势处于龙头地位,国内的主要供应商有长飞光纤、武汉睿芯和烽火科技等,目前在中低功率光纤激光器用特种光纤领域已实现超过50%的国产替代,高功率场景仍具有一定技术差距。

加彭切夫生于1939年,是激光材料物理领域的资深科学家,苏联科学院无线电工程及电子科学研究实验室的负责人,正宗的苏联技术出身。苏联以及解体后的俄罗斯人似乎办企业不太灵,但是加彭切夫行!加彭切夫1990年创立了IPG光子,2006年在纳斯达克上市,2017年营收14亿美元,目前市值60亿美元,是业界最知名的光纤激光器企业。加彭切夫持有IPG近半股份,是亿万富豪,虽然79岁了仍然任公司董事会主席和CEO。

除了光纤激光器之外,其他的固体激光器主要采用各种不同的激光晶体作为工作物质。

2009年加彭切夫陪同梅德韦杰夫总统和交通部长索科洛夫参观IPG在俄罗斯的生产基地

激光晶体:激光晶体由基质晶体和激活离子两部分组成,激活离子是掺杂在基质晶体中的化学元素离子,激光晶体中利用不同的激光离子可以产生不同波长的激光。目前应用较广泛的激光晶体包括LBO、BBO、Nd:YAG和Nd:YLF等。其中,LBO和BBO是中国科学院福建物质结构研究所在20世纪80年代发明并获得全球范围内的专利。

2009年,加彭切夫获得了美国激光协会颁发的阿瑟·肖洛奖,这是业界对他学术成就的认可。2010年,加彭切夫获得了俄罗斯国家科技奖,是俄罗斯科技最高荣誉。其实加彭切夫是俄罗斯美国双重国籍,IPG公司总部在美国马萨诸塞,制造工厂在美国、德国、俄罗斯和意大利。但是加彭切夫获这个奖是名正言顺的,公司的创立发展与苏联俄罗斯关系很深。

激光晶体的国外供应商有美国的II-VI、VLOC,立陶宛的EKSMA等,国内龙头供应商为福晶科技,是全球最大的LBO和BBO晶体供应商。

让加彭切夫荣誉等身又发了大财的光纤激光器是什么东西?没有光纤激光器之前,市场上用来作材料处理的工业激光主要是气体激光器和晶体激光器。气体激光器,典型代表是CO2激光器。晶体激光器代表是YAG激光器,YAG指的是添加钕或镱的钇铝石榴石。

泵浦源:光纤激光器的泵浦源主要采用半导体激光器,也被称为激光二极管,针对使用YDF作为工作物质的光纤激光器,对应泵浦源的输出波长主要为915nm和976nm。

100瓦的CO2激光打标机

915nm半导体激光器由于技术门槛较低且对工作温度不敏感已经成为中低功率光纤激光器的主流选择,而对于高功率光纤激光器,976nm半导体激光器由于高吸收率和光光转化率成为国内外企业的突破重点。国外主流厂商Dilas、IPG、Lumentum已大规模转向976nm产品,国内多数相关厂商则只具备芯片封装技术,仅有长光华芯等少数几家公司拥有自主设计能力。目前长光华芯的976nm半导体单管激光芯片已经实现量产,输出功率包含12、13w,平均光电转换效率达到60%。而国外龙头Dilas的976nm单管产品输出功率能够达到60w,光电转换效率相对比较接近。

激光打标就是用激光在金属或非金属材料上打上精美图案文字。CO2激光机以CO2作为工作物质负责产生激光辐射,一起充入放电管的还有辅助气体氮气和氦气。电极上加高压时,放电管中产生辉光放电,使气体分子释放出激光,能量放大后,形成激光束。打标就通过电脑控制振镜,改变激光束光路实现自动打标。CO2激光机体积大、结构复杂、维护困难。

固体激光器按照泵浦方式不同可以分为灯泵浦固体激光器和二极管泵浦固体激光器,其中传统的灯泵浦固体激光器由于较低的转化效率和使用寿命已经被市场逐步淘汰,二极管泵浦与光纤激光器泵浦方式类似,只是输出波长、功率等参数指标存在区别。

YAG激光器

谐振腔:光纤激光器的谐振腔由光纤光栅构成,光纤光栅是一种通过一定方法使光纤纤芯的折射率发生轴向周期性调制而形成的衍射光栅,可以简单理解为存在于光纤中的反射镜。目前光纤光栅的高端技术基本被加拿大的TeraXion垄断,该公司产品耐受泵浦功率可以达到3kw,国内的供应商长飞光纤产品的耐受泵浦功率已经能达到2kw,实现中高功率光栅国外垄断的突破。3、从下游激光器降本诉求看激光器件的格局演变

YAG激光器,需要用氪气或氙气灯管作为“泵浦灯”,发出光来照到Nd:YAG晶体产生激光。泵浦灯的发射光谱是宽带连续谱,仅少数光谱峰被Nd离子吸收,大部份没被吸收的光谱能量转成了热能,所以能量的使用率偏低。

在工业生产中,激光加工相比于传统加工具有高质高效、节能环保等许多优点,然而激光器高昂的价格让许多中小厂商望而却步,延缓了整个激光行业的发展进程。对于激光器厂商来说,降低成本可以提高其产品毛利率、市场竞争力,加速市场渗透。由于激光器生产中原材料占比通常超过80%,降低原材料成本是所有厂商的核心诉求。

虽然说CO2和YAG激光器有这样那样的缺点,但是搞出来的大功率激光在工业界还是很有用的。工业界常有这样的例子,老一代产品把市场培养起来,工艺切换,然后新一代产品又实现效率提升。光纤激光器就是用来提升效率的。

从国内外激光器龙头厂商的动向来看,其降低成本主要有两种方式:第一是提高核心器件的自供比例,第二是由进口器件切换为性价比更高的国产器件。

前面说了,半导体激光器优点很多,但是为什么开始没发展起来?因为它有一个致命弱点:发出来的激光质量不行。晶体激光器的输出光束质量高,有很高的时间和空间相干性,号称发射一束激光到月球上只有2公里的光斑。半导体激光器的光谱线宽与光束发散角,比晶体激光器要高几个量级,主要功能不行,那一堆优点就意义不大了。

国外激光器龙头公司经过多年的发展基本完成了从核心器件到激光器集成的技术突破和全产业布局。根据国内光电产品导购平台光电汇的数据,2012-2016年,全球光纤激光器龙头IPG10w-2000w的产品均出现不同程度的降价,尤以10w-30w的低功率产品为甚,从7-12万元不等下降至3-6万元,降价幅度接近50%。

一个办法是,让半导体激光器当晶体激光器的泵浦,把二者的优势结合起来。半导体激光器发出的光源,经过晶体激光器“优化”之后,形成高质量的光束再发出去。但是这个方案也有问题,块状晶体吸收波长短的高能量光子,转化为波长较长的低能量光子,总有一部分能量以无辐射跃迁的方式转换为热能。这部分热能如果在块状晶体中散不出去,那就要命了,一会就烧毁了,所以散热问题很重要。

对应来看IPG的发展历史,2010年以来,IPG陆续收购了PhotonicsInnovations、Optigrate等一系列拥有光隔离器、光耦合透镜、光纤光栅等器件技术的厂商,进行向产业链上游的纵向整合。同时,公司通过自主研发掌握了晶圆生长、泵浦源、有源光纤等核心器件技术,通过自研+整合完成了从器件到激光器集成的全自供。从其官方披露的数据看,2009年至2017年,公司激光芯片产量由不到30万片上升至超过900万片,同时每瓦特芯片成本累计下滑80%,年均降幅达到18%。

如果能把块状晶体做成细长条,散热面积就非常大了,能解决问题,这其实就是做成光纤的样子。1964年就有人做出了玻璃激光器,晶体用的就是光纤,虽然光源不是半导体激光器的。但那时光纤本身也没发展起来,缺陷很大,光源很难聚焦到光纤,所以这条路线20多年没什么进展。

德国激光器老牌霸主Rofin则分别在1997年和2008年收购了全球半导体激光器龙头Dilas和全球最大的特种光纤和光纤激光模块厂商Nufern并整合了Corelase、m2k
Laser等高功率光纤激光器和半导体激光器公司,完成了从半导体泵浦源、光纤耦合器、特种光纤等核心器件到各类高端激光器的全产业布局。2016年,Rofin被美国相干公司收购,使其成为全球最大的激光器和光电子产品解决方案提供商。

到1980年代,作为泵浦的半导体激光器进展很大,光纤随着网络通信的大发展也进步非常大,光纤激光器的技术条件慢慢成熟了。1987年英国南安浦顿大学和美国贝尔实验室证明了掺铒光纤放大器的可行性,取得了关键的科研突破。但是产业突破是加彭切夫1990年创立的IPG坚持多年后实现的。光纤激光器是非常高端的高科技,涉及多个学科。作为泵浦的半导体激光器的功率要能做大,光纤的放大性能也要不断改进。光纤改进的绝招就是在里面加各种稀土元素。IPG是典型的西方国家高科技企业,研发很不简单,产品利润率也高达50%~60%。

国内供应商锐科激光、创鑫激光近几年的原材料采购比例也在逐年下滑。根据锐科激光的招股说明书,2015-2017年,公司有源光纤、无源光纤、泵浦源等核心光学器件的采购比例由79.24%下降至65.43%。从创鑫激光的招股说明书来看,公司目前除了芯片组件、高功率光纤光栅和光纤,其他原材料均可在国内进行采购或自主生产,已经实现光纤激光器核心器件泵源由外购到采购芯片组件自行封装的转变。

光纤激光器有半导体激光器的一系列优点,又有晶体激光器光束质量高的优点。从产业上来说,比起CO2激光器和YAG激光器,光纤激光器的优点一目了然,优势大到没什么好比的。光纤激光器有绝对理想的光束质量,又有半导体激光器超高的转换效率,又象光纤和LED灯一样完全免维护,稳定性高,体积还很小,真的是非常完美的产品。

另一方面,国内光库科技、福晶科技等一系列国产激光器件供应商的出现实现了大部分无源器件的国产替代。光库科技主要供应隔离器、合束器、耦合器等光电子器件,2018年公司实现销售收入2.89亿元,其中国内收入占比53.67%,国外收入占比46.33%。以晶体材料起家的福晶科技同时也供应精密光学元件和激光器件,2018年公司实现销售收入4.91亿元,其中激光器件和精密光学元件合计占比约40%,国内收入占比41.25%,国外收入占比58.75%。

admin

网站地图xml地图